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Design of a transcriptomic project

Biological question
↓ ↑

Experimental design
↓

Data acquisition
↓

Data analysis:

Normalization, differential analysis, clustering, networks, ...
↓ ↑

Validation
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Aims for this talk

What is the biological/statistical meaning of co-expression
analysis?
What methods exist for performing co-expression analysis?
How to choose the number of clusters present in data?
Advantages / disadvantages of different approaches: speed,
stability, robustness, interpretability, model selection, ...
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1 Introduction

2 Unsupervised clustering

3 Mixture models for transcriptomic data
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Gene co-expression1

1Google image search: “Coexpression”
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Gene co-expression is...

The simultaneous expression of two or more genes2

Groups of co-transcribed genes3

Similarity of expression4 (correlation, topological overlap, mutual
information, ...)
Groups of genes that have similar expression patterns5 over a
range of different experiments

Related to shared regulatory inputs, functional pathways, and
biological process(es)6

2https://en.wiktionary.org/wiki/coexpression
3http://bioinfow.dep.usal.es/coexpression
4http://coxpresdb.jp/overview.shtml
5Yeung et al. (2001)
6Eisen et al. (1998)
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Using correlations: relevance network 7

First (naive) approach: calculate correlations between expressions for
all pairs of genes, threshold the smallest ones and build the network.

“Correlations” Thresholding Graph

7Butte and Kohane (1999,2000)
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Unsupervised clustering

Objective
Define homogeneous and well-separated groups of genes from
transcriptomic data

What does it mean for a pair of genes to be close?
Given this, how do we define groups?

Two broad classes of methods typically used:
1 Distance-based clustering (hierarchical clustering and K-means)
2 Model-based clustering (mixture models)
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Hierarchical clustering analysis (HCA)

Objective Construct embedded partitions of (n,n − 1, . . . ,1) groups,
forming a tree-shaped data structure (dendrogram)

Algorithm
Initialization n groups for n genes
At each step:
• Closest genes are clustered
• Calculate distance between this
new group and the remaining genes

Source: http://girke.bioinformatics.ucr.edu/GEN242/mydoc Rclustering 3.html
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Distances between groups for HCA

Source: https://www.multid.se/genex/onlinehelp/hs515.htm
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Distances between groups for HCA

Average-linkage clustering
∑

y∈Ck

∑
y′∈Ck′

d(y ,y ′)

|Ck ||Ck′ |

Complete-linkage clustering max
y∈Ck

max
y ′∈Ck′

d(y , y ′)

Single-linkage clustering min
y∈Ck

min
y ′∈Ck′

d(y , y ′)

Ward distance
∑

y∈Ck∪Ck′
d(y , yCk∪Ck′

)

d= Euclidian distance −{
∑

y∈Ck
d(y , yCk ) +

∑
y∈Ck′

d(y , yCk′
)}
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Distance between genes: similarity measures

Manhattan distance
p∑

`=1

|yi` − yi ′`|

Euclidian distance

d2(yi ,yi ′) =

p∑
`=1

(yi` − yi ′`)
2

⇒ Sensitive to scaling and differences in average expression level

Pearson correlation distance:

1− Cov(yi ,yi ′)

σ(yi)σ(yi ′)

⇒ Assessment of linear relationships
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Examples of Pearson correlation values
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Examples of Pearson correlation values

Source: https://www.autodeskresearch.com/publications/samestats
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Similarity measures

Spearman correlation distance: Pearson correlation distance
between the rank values: yij replaced with rank of sample j across
all samples
⇒ Assessment of monotonic relationships (whether linear or not)

ED& MLMM& AR Co-expression analysis Ecole chercheur SPS 17 / 49



Similarity measures

Spearman correlation distance: Pearson correlation distance
between the rank values: yij replaced with rank of sample j across
all samples
⇒ Assessment of monotonic relationships (whether linear or not)

ED& MLMM& AR Co-expression analysis Ecole chercheur SPS 17 / 49



HCA properties

HCA is stable
Results strongly depend on the chosen distances
The number of clusters is chosen according to the tree
Branch lengths are proportional to the percentage of inertia loss
⇒ a long branch indicates that the 2 groups are not homogeneous
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K-means algorithm

Initialization K centroids are chosen ramdomly or by the user

Iterative algorithm
1 Assignment Each gene is assigned to a group according to its

euclidian distance to the centroids.
2 Calculation of the new centroids

Stopping criterion: when the maximal number of iterations is achived
OR when groups are stable

Properties
Rapid and easy
Results depend strongly on initialization
Number of groups K is fixed a priori
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K-means illustration

Animation: http://shabal.in/visuals/kmeans/1.html
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K-means algorithm: Choice of K ?

Elbow plot of within-sum of squares: examine the percentage
of variance explained as a function of the number of clusters
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Model-based clustering

Probabilistic clustering models : data are assumed to come from
distinct subpopulations, each modeled separately
Rigourous framework for parameter estimation and choice of the
number of groups
It assigns a probability of cluster membership for each observation
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How to construct a mixture model?

Distribution: what distribution to use for each group?
 depends on the observed data.

Inference: how to estimate the parameters?
 usually done with an EM-like algorithm (Dempster et al., 1977)

Model selection: how to choose the number of groups?

A collection of mixtures with a varying number of groups is
usually considered
A penalized criterion is used to select the best model from the
collection
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Key ingredients of a mixture model

Let y = (y1, . . . ,yn) denote the observations with yi ∈ Rp and
n >> p
We introduce a latent variable to indicate the group from which
each observation arises:

Z ∼M(n;π1, . . . , πK ),
K∑

`=1

π` = 1

P(Zi = `) = π`

Assume that yi are conditionally independent given Z
Model the distribution of yi |Zi using a parametric distribution:

(yi |Zi = `) ∼ f (·; θ`)

After parameter estimation, calculate the conditional probabilities

τi` = P(Zi = `|yi)
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Clustering data into groups

Maximum a posteriori (MAP) rule: Assign genes to the group with
highest conditional probability:

τik (%) k = 1 k = 2 k = 3
i = 1 65.8 34.2 0.0
i = 2 0.7 47.8 51.5
i = 3 0.0 0.0 100
... ... ... ...
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Model selection for mixture models
Asymptotic penalized criteria8

BIC aims to identify the best model wrt the global fit of the data
distribution:

BIC(k) = log P(y|k , θ̂k )− Dk

2
log(n)

where Dk is the # of free parameters and θ̂k is the MLE of the
model with k clusters
ICL aims to identify the best model wrt cluster separation:

ICL(k) = BIC(k)−

(
−

n∑
i=1

k∑
`=1

τi` log τi`

)

 Select K that maximizes BIC or ICL (but be careful about their sign!)

8Asymptotic: approaching a given value as the number of observations n → ∞
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Model selection for mixture models: BIC vs ICL
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Model selection for mixture models
Non-asymptotic penalized criterion

The slope heuristics9 is defined by SH(k) = log P(y|k , θ̂k )− κDk
n

In large dimensions, log P(y|k , θ̂k ) must be linear in Dk
n

Estimation of slope to calibrate κ in a data-driven manner 10
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κ

59 54 48 42 36 30 25 19 13 7 4

Selected models with respect to the successive slope values

Number of points (penshape(m),− γn(ŝn)) for the regression
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 Select K that maximizes SH(k)

9Birgé & Massart (2007)
10Data-Driven Slope Estimation (DDSE) available in capushe R package
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A note about evaluating clustering approaches11

Clustering results can be evaluated based on internal criteria
(e.g., statistical properties of clusters) or external criteria (e.g.,
functional annotations)

Adjusted Rand index: measure of similarity between two data
clusterings, adjusted for the chance grouping of elements
 ARI has expected value of 0 in the case of a random partition,
and is bounded above by 1 in the case of perfect agreement

Methods that give different results depending on the initialization
should be rerun multiple times to check for stability
Most clustering methods will find clusters even when no actual
structure is present⇒ good idea to compare to results with
randomized data!

11D’haeseller, 2005
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From mixture models to co-expression analysis

Transcriptomic data: main source of ’omic information available for
living organisms

Microarrays (∼1995 - )
High-throughput sequencing: RNA-seq (∼2008 - )

Co-expression (clustering) analysis
Study patterns of relative gene expression (profiles) across
several conditions
⇒ Co-expression is a tool to study genes without known or
predicted function (orphan genes)
Exploratory tool to identify expression trends from the data
( 6= sample classification, identification of differential expression)
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For microarray data

Development of model-based clustering with variable selection for
Gaussian mixture models (Maugis et al., 2009a, 2009b, 2009c)

From Gene Expression Modeling to genomic Networks
Mixtures for 18,110 genes described by 387 expression
differences between two conditions (stress/no stress), categorized
in 18 types of stress.
A new module of CATdb, for the integration of other sources of
data and the visualization of all the results (Zaag et al., 2015,
NAR)
Methodology also available for small datasets (Frei-dit Frey et al.,
2014, Genome Biology)
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BIC used to create stress categories

 It suggests that several latent structures may exist

Nematode Drought
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Large scale co-expression study of Arabidopsis
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For RNA-seq data

Let yij be the raw count for gene i in sample j , with library size sj

Profile for gene i : pij =
yij∑
` yi`

Normalized profile for gene i : pij =
yij/sj∑
` yi`/s`
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Finite mixture models for RNA-seq

Let y = (y1, . . . ,yn) denote the observations with yi ∈ Rp and
n >> p
We introduce a latent variable to indicate the group from which
each observation arises:

Z ∼M(n;π1, . . . , πK ),
K∑

k=1

πk = 1

P(Zi = k) = πk

Assume that yi are conditionally independent given Z
Model the distribution of yi |Zi using a parametric distribution:

For microarray data, we often assume yi |Zi = k ∼ Np(µk ,Σk )
What about RNA-seq data?
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What family & parameterization for RNA-seq data?

1 Directly model read counts (HTSCluster):

(yi |Zi = k) ∼
p∏

j=1

Poisson(yij |µijk )

2 Apply appropriately chosen data transformation (coseq):

(ỹi |Zi = k) ∼ Np(µk ,Σk )
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HTSCluster: poisson mixture models 12

yi |Zi = k ∼
J∏

j=1

Poisson(yij |µijk )

Question: How to parameterize the mean µijk to obtain meaningful
clusters of co-expressed genes?

µijk = wiλjksj

wi : overall expression level of observation i (yi·)
λk = (λjk ) : clustering parameters that define the profiles of genes
in cluster k (variation around wi )
sj : normalized library size for sample j , where

∑
j sj = 1

12Rau et al. (2015)
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Behavior of model selection in practice for
RNA-seq
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Poisson mixture models for RNA-seq data

Advantages:
1 Directly models counts (no data transformation necessary)
2 Clusters interpreted in terms of profiles around mean expression
3 Implemented in HTSCluster package on CRAN (v1.0.8)
4 Promising results on real data...

Limitations:
1 Slope heuristics requires a very large collection of models to be fit
2 Restrictive assumption of conditional independence among

samples
3 Cannot model per-cluster correlation structures
4 Poisson distribution requires assuming that mean = variance
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Correlation structures in RNA-seq data

Example: data from Mach et al. (2014) on site-specific gene expression along the gastrointestinal tract of 4 healthy piglets
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Coseq: Gaussian mixture models13

Idea: Transform RNA-seq data, then apply Gaussian mixture models

Several data transformations have been proposed
log2(yij + c)

Variance stabilizing transformation (DESeq)
Moderated log counts per million (edgeR)
Regularized log-transformation (DESeq2)

... but recall that we wish to cluster the normalized profiles

pij =
yij/sj∑
` yi`/s`

13Rau & Maugis-Rabusseau (2017)
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Remark: transformation needed for normalized
profiles

The normalized profiles are compositional data, i.e. the sum for
each gene pi· = 1
This implies that the vector pi is linearly dependent⇒ imposes
constraints on the covariance matrices Σk that are problematic for
the general Gaussian mixture models

As such, we consider a transformation on the normalized profiles
to break the sum constraint:

arcsin
(√

pij
)

And fit a Gaussian mixture model to the transformed normalized
profiles:
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Real data analysis: Embryonic fly development

modENCODE project to provide functional annotation of
Drosophila (Graveley et al., 2011)
Expression dynamics over 27 distinct stages of development
during life cycle studied with RNA-seq
12 embryonic samples (collected at 2-hr intervals over 24 hrs) for
13,164 genes downloaded from ReCount database (Frazee et al.,
2011)



Running the PMM or GMM for RNA-seq data with
coseq

> library(coseq)
>
> GMM <- coseq(counts, K=2:10, model="Normal",
> transformation="arcsin")
> summary(GMM)
> plot(GMM)
>
> ## Note: indirectly calls HTSCluster for PMM
> PMM <- coseq(counts, K=2:10, model="Poisson",
> transformation="none")
> summary(PMM)
> plot(PMM)
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Evaluation of clustering quality
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Evaluation of clustering quality
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Examining clustering results
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Examining clustering results
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Some practical remarks for co-expression analysis

Preprocessing details (normalization, filtering, dealing with missing
values) can affect clustering outcome

Should all genes be included?
Screening via differential analysis or a filtering step (based on
mean expression or coefficient of variation)...
 Usually a good idea, genes that contribute noise will affect
results!

What to do about replicates?
Average, or model each one independently.
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