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0 Introduction

9 Unsupervised clustering
@ Distance-based clustering
@ Model-based clustering
@ Conclusion / discussion

e Mixture models for transcriptomic data
@ For microarray data
@ For RNA-seq data
@ Conclusion / discussion

ED& MLMM& AR Co-expression analysis Ecole chercheur SPS 2/49



Design of a transcriptomic project

| Biological question |

1T

| Experimental design |

]
| Data acquisition |
]

| Data analysis: |

Normalization, differential analysis, clustering, networks, ...
1
Validation
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Aims for this talk

@ What is the biological/statistical meaning of co-expression
analysis?

@ What methods exist for performing co-expression analysis?

@ How to choose the number of clusters present in data?

@ Advantages / disadvantages of different approaches: speed,
stability, robustness, interpretability, model selection, ...
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0 Introduction
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Gene co-expression’
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Gene co-expression is...

@ The simultaneous expression of two or more genes?
@ Groups of co-transcribed genes®

@ Similarity of expression? (correlation, topological overlap, mutual
information, ...)

@ Groups of genes that have similar expression patterns® over a
range of different experiments

2https://en.wiktionary.org/wiki/coexpression
3http://bioinfow.dep.usal.es/coexpression
“http://coxpresdb.jp/overview.shtml

Yeung et al. (2001)

Eisen et al. (1998)
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Gene co-expression is...

@ The simultaneous expression of two or more genes?
@ Groups of co-transcribed genes®

@ Similarity of expression? (correlation, topological overlap, mutual
information, ...)

@ Groups of genes that have similar expression patterns® over a
range of different experiments

@ Related to shared regulatory inputs, functional pathways, and
biological process(es)®

2https://en.wiktionary.org/wiki/coexpression
3http://bioinfow.dep.usal.es/coexpression
“http://coxpresdb.jp/overview.shtml

Yeung et al. (2001)

Eisen et al. (1998)
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Using correlations: relevance network ’

First (naive) approach: calculate correlations between expressions for
all pairs of genes, threshold the smallest ones and build the network.
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“Correlations” Thresholding Graph

"Butte and Kohane (1999,2000)
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9 Unsupervised clustering
@ Distance-based clustering
@ Model-based clustering
@ Conclusion / discussion
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Unsupervised clustering

Objective

Define homogeneous and well-separated groups of genes from
transcriptomic data

What does it mean for a pair of genes to be close?
Given this, how do we define groups?
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Unsupervised clustering

Objective

Define homogeneous and well-separated groups of genes from
transcriptomic data

What does it mean for a pair of genes to be close?
Given this, how do we define groups?

Two broad classes of methods typically used:
@ Distance-based clustering (hierarchical clustering and K-means)
© Model-based clustering (mixture models)
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Hierarchical clustering analysis (HCA)

Objective Construct embedded partitions of (n,n—1,...,1) groups,
forming a tree-shaped data structure (dendrogram)

Algorithm
@ Initialization n groups for n genes

@ At each step:
e Closest genes are clustered
e Calculate distance between this
new group and the remaining genes
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Hierarchical clustering analysis (HCA)

Objective Construct embedded partitions of (n,n—1,...,1) groups,

forming a tree-shaped data structure (dendrogram)

@ =
g1 g2 93 g4
Algorithm
@ Initialization n groups for n genes "
@ At each step: gt g2 93 g4
e Closest genes are clustered
e Calculate distance between this ~ © 0%
new group and the remaining genes 10
o]
g1 g2 93 g4

Source: http:/girke.bioinformatics.ucr.edu/GEN242/mydoc-Rclustering-3.html
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Distances between groups for HCA

.
Completelinkage Q O
Singlelinkage .

Averagelinkage

Source: https://www.multid.se/genex/onlinehelp/hs515.htm
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Distances between groups for HCA

Average-linkage clustering

Complete-linkage clustering
Single-linkage clustering

Ward distance
d= Euclidian distance

Zyeck Zy’eck, aly.y’)
[Ckl|C |

max max d(y,y’)
yeCy y'eCys

min min d(y,y’)
yeCx y'eCp

Zye CxUCys d(y? kaUCk/ )

_{ZYECk d(y7 ka) + ZyECk/ d(y7 ka/)}
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Distance between genes: similarity measures

@ Manhattan distance

o
> ie = vl
=
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Distance between genes: similarity measures

@ Manhattan distance

o
> ie = vl
=

@ Euclidian distance
p
ylayl’ Z Yie — YI’E
(=1

= Sensitive to scaling and differences in average expression level
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Distance between genes: similarity measures

@ Manhattan distance

p
Z Yie — Vil
=1
@ Euclidian distance
p
YIayI’ Z Yie — YI’E
=1
= Sensitive to scaling and differences in average expression level

@ Pearson correlation distance:
_ Cov(yi.yi)
o(yi)o(yir)
= Assessment of linear relationships
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Examples of Pearson correlation values
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Examples of Pearson correlation values

X Mean: 54.26
Y Mean: 47.83
X SD : 16.76
Y SD : 26.93
Corr. : -0.06

0
.’ :
! ol
& J
K .
(o
> R

£ 1l
= $ . . T
> ¥ i S H
g 4 T
& o
R Py
» o 100 dm L lumiit & oo . ! H
SSE B p T
! % 0
. - [ g, . ':.":" S5O c - i -
B S . e
. . QTN . b Y s
H E} - 5 . <
i 2 é
, : ~,
. M.“' L e o0 o e
haalad Cemig et P 7 * * ~

Source: https://www.autodeskresearch.com/publications/samestats
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Similarity measures

@ Spearman correlation distance: Pearson correlation distance
between the rank values: y; replaced with rank of sample j across
all samples
= Assessment of monotonic relationships (whether linear or not)

Monatonic Monotonic Mon-Monatonic
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Similarity measures

@ Spearman correlation distance: Pearson correlation distance
between the rank values: y; replaced with rank of sample j across

all samples
= Assessment of monotonic relationships (whether linear or not)

Spearman correlation=1 Spearman correlation=0.84 Spearman correlation=0.35
Pearson correlation=0.37

Pearson correlation=0.88 Pearson correlation=0.67
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HCA properties

HCA is stable
Results strongly depend on the chosen distances
The number of clusters is chosen according to the tree

Branch lengths are proportional to the percentage of inertia loss
= a long branch indicates that the 2 groups are not homogeneous

Dim 2

Dim 1 Euclidian distance, complete linkage

i
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K-means algorithm

Initialization K centroids are chosen ramdomly or by the user

lterative algorithm

@ Assignment Each gene is assigned to a group according to its
euclidian distance to the centroids.

@ Calculation of the new centroids

Stopping criterion: when the maximal number of iterations is achived
OR when groups are stable
Properties

@ Rapid and easy

@ Results depend strongly on initialization

@ Number of groups K is fixed a priori
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K-means illustration

CEIN IS (=Y I
AN I

Animation: http://shabal.in/visuals/kmeans/1.html
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http://shabal.in/visuals/kmeans/1.html

K-means algorithm: Choice of K?

@ Elbow plot of within-sum of squares: examine the percentage
of variance explained as a function of the number of clusters

10000 15000
1 1

5000

Dim 1 Number of clusters

ED& MLMM& AR Co-expression analysis Ecole chercheur SPS 21/49



Model-based clustering

@ Probabilistic clustering models : data are assumed to come from
distinct subpopulations, each modeled separately

@ Rigourous framework for parameter estimation and choice of the
number of groups

@ It assigns a probability of cluster membership for each observation

what we observe the model the expected results

Z="7 Z:1=e2=03=0
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How to construct a mixture model?

@ Distribution: what distribution to use for each group?
~» depends on the observed data.

@ Inference: how to estimate the parameters?
~ usually done with an EM-like algorithm (Dempster et al., 1977)

@ Model selection: how to choose the number of groups?

@ A collection of mixtures with a varying number of groups is
usually considered

o A penalized criterion is used to select the best model from the
collection
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Key ingredients of a mixture model

@ Lety = (y1,...,Yn) denote the observations with y; € RP and
n>>p

@ We introduce a latent variable to indicate the group from which
each observation arises:

K
Z~ M(nmmy,...,TK), Zm:1
=1

P(Zi=1t)=m

@ Assume that y; are conditionally independent given Z
@ Model the distribution of y;|Z; using a parametric distribution:

(YilZi = £) ~ f(-; 0,)
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Key ingredients of a mixture model

@ Lety = (y1,...,Yn) denote the observations with y; € RP and
n>>p

@ We introduce a latent variable to indicate the group from which
each observation arises:

K
Z~ M(nmmy,...,TK), Zm:1
=1

P(Z=10)=m

@ Assume that y; are conditionally independent given Z
@ Model the distribution of y;|Z; using a parametric distribution:

(YilZi = £) ~ f(-; 0,)

@ After parameter estimation, calculate the conditional probabilities
Tie = P(Z; = L]y))
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Clustering data into groups

Distributions: Conditional probabilities:
g f (X
g(X):W1H(X)+Tzfg(XJ+7T3f3(X) T,‘k:L(XI)

9(x;)

8

84

Maximum a posteriori (MAP) rule: Assign genes to the group with
highest conditional probability:

i (%) k=1 k=2 k=3
i=1 65.8 34.2 0.0
=2 0.7 47.8 515
i=3 0.0 0.0 100
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Model selection for mixture models
Asymptotic penalized criteria®

@ BIC aims to identify the best model wrt the global fit of the data
distribution:

BIC(K) = log P(ylk. fy) — ¥ log(n)

where Dy is the # of free parameters and 0 is the MLE of the
model with k clusters

@ ICL aims to identify the best model wrt cluster separation:

ICL(k) = BIC(k ( Z Z 7i¢log m)

i=1 =1

~ Select K that maximizes BIC or ICL (but be careful about their sign!)

8 Asymptotic: approaching a given value as the number of observations n — oo
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Model selection for mixture models: BIC vs ICL

-3300
| |

-3500
|

-3700
|

o

o

Variable 1 Mumber of clusters

BIC solution ICL solution
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Model selection for mixture models

Non-asymptotic penalized criterion

The slope heuristics® is defined by SH(k) = log P(y|k, 0x) — m%
@ In large dimensions, log P(y|k, 6x) must be linear in %
@ Estimation of slope to calibrate « in a data-driven manner 1°

~+ Select K that maximizes SH(k)

®Birgé & Massart (2007)
9Data-Driven Slope Estimation (DDSE) available in capushesR package
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A note about clustering approaches’’

@ Clustering results can be evaluated based on internal criteria
(e.g., statistical properties of clusters) or external criteria (e.g.,
functional annotations)

o Adjusted Rand index: measure of similarity between two data
clusterings, adjusted for the chance grouping of elements
~» ARI has expected value of 0 in the case of a random partition,
and is bounded above by 1 in the case of perfect agreement

@ Methods that give different results depending on the initialization
should be rerun multiple times to check for stability

@ Most clustering methods will find clusters even when no actual

structure is present = good idea to compare to results with
randomized data!

""D’haeseller, 2005
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e Mixture models for transcriptomic data
@ For microarray data
@ For RNA-seq data
@ Conclusion / discussion
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From mixture models to co-expression analysis

@ Transcriptomic data: main source of ‘omic information available for
living organisms
e Microarrays (~1995 -)
e High-throughput sequencing: RNA-seq (~2008 - )

Co-expression (clustering) analysis

@ Study patterns of relative gene expression (profiles) across
several conditions

@ = Co-expression is a tool to study genes without known or
predicted function (orphan genes)

@ Exploratory tool to identify expression trends from the data
(# sample classification, identification of differential expression)

v
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For microarray data

Development of model-based clustering with variable selection for
Gaussian mixture models (Maugis et al., 2009a, 2009b, 2009c)

From Gene Expression Modeling to genomic Networks

@ Mixtures for 18,110 genes described by 387 expression
differences between two conditions (stress/no stress), categorized
in 18 types of stress.

@ A new module of CATdb, for the integration of other sources of
data and the visualization of all the results (Zaag et al., 2015,
NAR)

@ Methodology also available for small datasets (Frei-dit Frey et al.,
2014, Genome Biology)
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BIC used to create stress categories

'v.ll

[N
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BIC used to create stress categories

~ |t suggests that several latent structures may exist
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BIC used to create stress categories

~ |t suggests that several latent structures may exist

Nematode Drought
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Large scale co-expression study of Arabidopsis

what we observe

Matrix by stress
{ genes x log-ratios}

Gaussian mixture

ED& MLMM& AR

the model

the expected results

Data-driven method

* number of cluster
chosen by BIC

« gene classification

based on the conditional
probabilities

Co-expression analysis

Nitrogen 13495 59
Temperature 11365 34
Drought 8143 34
Salt 5729 30
Heavy metal 10617 57
uv 7 894 37
G 5350 32
Oxydative stress 10127 52
Nectrophic 11220 50
bacteria
Biotrophic 12023 56
bacteria
Fungi 9773 51
Rhodococeus 1900 13
Oomycete 5508 31
Nematode 7413 27
Stifenia 1525 17
Virus 11832 54

~ 700 clusters of co-expression
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For RNA-seq data
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For RNA-seq data

100000 150000
I
10 12

Count
Log(count + 1)

50000
I

Sample Sample
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For RNA-seq data

£ © ; 3
8 g ° £ o |
e T T T T T T 2 T T T T T T g L T T T T T T
2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12
Sample Sample Sample
@ Let y; be the raw count for gene 7 in sample j, with library size s;
. . Yii
° D pii =
Profile for gene i: p; S
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For RNA-seq data
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Finite mixture models for RNA-seq

@ Lety = (y1,...,Yn) denote the observations with y; € RP and
n>>p

@ We introduce a latent variable to indicate the group from which
each observation arises:

ZNM(H;W1,...,7TK), =1

1M

P(Zj = k) = m

@ Assume that y; are conditionally independent given Z
@ Model the distribution of y;|Z; using a parametric distribution:

e For microarray data, we often assume y;|Z; = k ~ Np(puy, k)
e What about RNA-seq data?
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What family & parameterization for RNA-seq data?

150000

100000

Log(count + 1)
Count / Total count

50000
00 01 02 03 04 05 06 07

T T T T T T T T T T T T T T T T T
2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12

Sample Sample Sample

@ Directly model read counts (HTSCluster):
p
(VilZ = k) ~ ] ] Poisson(y;l )
j=1
© Apply appropriately chosen data transformation (coseq):
(YilZi = k) ~ Np(k, Zk)
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HTSCluster: poisson mixture models '2

J
VilZ = k ~ ] [ Poisson(yj|ux)
=1

Question: How to parameterize the mean p;j to obtain meaningful
clusters of co-expressed genes? J

12R
au et al. (2015)
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HTSCluster: poisson mixture models '2

J
VilZ = k ~ ] [ Poisson(yj|ux)
=1

Question: How to parameterize the mean p;j to obtain meaningful
clusters of co-expressed genes? J

Wik = WiAjkSj

@ w; : overall expression level of observation i (y;.)

@ )\ = (k) : clustering parameters that define the profiles of genes
in cluster k (variation around w;)

@ s; : normalized library size for sample j, where Z/- sj=1

12R
au et al. (2015)
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Behavior of model selection in practice for

RNA-seq

@ @ @
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Poisson mixture models for RNA-seq data

Advantages:
@ Directly models counts (no data transformation necessary)
© Clusters interpreted in terms of profiles around mean expression
© Implemented in HTSCluster package on CRAN (v1.0.8)
© Promising results on real data...
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Poisson mixture models for RNA-seq data

Advantages:
@ Directly models counts (no data transformation necessary)
© Clusters interpreted in terms of profiles around mean expression
© Implemented in HTSCluster package on CRAN (v1.0.8)
© Promising results on real data...

Limitations:
@ Slope heuristics requires a very large collection of models to be fit

© Restrictive assumption of conditional independence among
samples

© Cannot model per-cluster correlation structures
© Poisson distribution requires assuming that mean = variance
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Correlation structures in RNA-seq data
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Example: data from Mach et al. (2014) on site-specific gene expression along the gastrointestinal tract of 4 healthy piglets
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Coseq: Gaussian mixture models'?

Idea: Transform RNA-seq data, then apply Gaussian mixture models J

Several data transformations have been proposed
@ log,(y; + ¢)
@ Variance stabilizing transformation (DESeq)
@ Moderated log counts per million (edgeR)
@ Regularized log-transformation (DESeqg?2)

... but recall that we wish to cluster the normalized profiles

pi = Yi/Si
N i/ se

8Rau & Maugis-Rabusseau (2017)
ED& MLMM& AR Co-expression analysis Ecole chercheur SPS 42 /49



Remark: transformation needed for normalized

profiles

@ The normalized profiles are compositional data, i.e. the sum for
each gene p;. = 1

@ This implies that the vector p; is linearly dependent = imposes
constraints on the covariance matrices X4 that are problematic for
the general Gaussian mixture models

@ As such, we consider a transformation on the normalized profiles
to break the sum constraint:

arcsin (/pj)

@ And fit a Gaussian mixture model to the transformed normalized
profiles:
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Real data analysis: Embryonic fly development

@ modENCODE project to provide functional annotation of
Drosophila (Graveley et al., 2011)

@ Expression dynamics over 27 distinct stages of development
during life cycle studied with RNA-seq

@ 12 embryonic samples (collected at 2-hr intervals over 24 hrs) for
13,164 genes downloaded from ReCount database (Frazee et al.,
2011)




Running the PMM or GMM for RNA-seq data with

coseq

> library (coseq)

>

> GMM <- coseqg(counts, K=2:10, model="Normal",

> transformation="arcsin")

> summary (GMM)

> plot (GMM)

>

> ## Note: indirectly calls HTSCluster for PMM
> PMM <- coseqg(counts, K=2:10, model="Poisson",
> transformation="none")

> summary (PMM)

> plot (PMM)
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Evaluation of clustering quality
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Examining clustering results
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Examining clustering results
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Some practical remarks for co-expression analysis

Preprocessing details (normalization, filtering, dealing with missing
values) can affect clustering outcome J

@ Should all genes be included?
Screening via differential analysis or a filtering step (based on
mean expression or coefficient of variation)...

~ Usually a good idea, genes that contribute noise will affect
results!

@ What to do about replicates?
Average, or model each one independently.
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