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High-Throughput Sequencing changes  
Bioinformatic approaches 

Impacts in Computer sciences 
- Run huge data : from 50 Gigas to Tera 

- High-performing of computer and network  

- Disk usage and backup 

Impacts in Bioinformatics Tools 
- Create new algorithms (more performing, 

sensibility/specificity) 

- Use and evaluate many tools  

(known parameters, set of reference) 

Impacts in Statistical methods 
-Impact of technical methods 

 (library preparation, sequencing) 

-Change of data : type, quantity 



RNA-Seq Applications 

• Applications on mRNA or non coding RNA 

• Measure gene expression of annotated or de novo genome 

• Differential expression (conditions, organs, genotypes…) 

• Detect variants : allele specific expression, SNPs in genes  

Goal     
1- assigned each read to a gene  
2- obtain counts by gene 



1/ Classical analyses of RNA-Seq (V. Brunaud) 
• Check quality , Trimming 
• Mapping / counts 
• Assembly 
 

2/ Specific applications of RNA-Seq (C. Toffano-Nioche) 
• Study smallRNA 
• Gene expression by transcript (isoform) 
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Bioinformatics from raw data to counts 
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Classic pre-processing 
 
 

Insert size universal adapter Adapter with index 



Trimmomatic : remove adapters, 

reads with low quality, length too 

small (trimming) 

SortMeRNA : remove rRNA 

sequences  

BCL files 
From sequencer 

Fastq   
results 

Insert size universal adapter Adapter with index 

Bcl2fastq (Illumina) : convert  

base calling in fastq sequences, 

demultiplexing 

Classic pre-processing 
 
 



… 

Fastq format 
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Name  Sequence 

Quality encoding 



View the quality of reads with fastQC 
 
 
 
 

FastQC  a report of quality on each sample 
•Command line or interface viewer 
•Generate a html report to check quality 
 
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ 



Quality score (Q-scores): 
Q(B) =-10 log10(P(~B)) 
where P(~B) is the estimated probability of an assertion of Base being wrong. 
Qscore=20 =1% error 

fastQC – Quality score 
 
 

central red line = median value, blue line = mean quality 
yellow box = Inter-quartile range (25-75%) 
upper and lower whiskers represent the 10% and 90% points 
 

Generally trimming by 3’end  as long as Qscore < 20   



fastQC – Quality score 
 
 

 Quality score very good Qscore > 30 ( < 1%0) 



fastQC – length of reads 

 

 



fastQC – GC % 

 

 



• Distinguish PCR- from natural duplicates : 
Natural duplicates are read duplicates that originated from different mRNA 

molecules.  
 Library using UMI=Unique Molecular Identifier method. 
 
• The impact of amplification on differential expression analyses by RNA-

seq. S. Parekh et al. (2016) in Scientific reports vol6 
 

Duplicate reads = exactly same sequence for 2 reads 
Is it a bias of PCR-duplication or a natural duplicate ? 

 
 

• “We find that a large fraction of computationally identified read 
duplicates are not PCR duplicates and can be explained by sampling 
and fragmentation bias.” 
 

• “Removal of duplicates does not improve the accuracy of 
quantification” 
 

• “Based on simulated differential expression…, we find that 
computational removal of duplicates has either a negligible or a 
negative impact on FDR and power” 

 It’s not necessary to remove duplicate reads 



Conclusion of pre-processing, check quality 
 
 Current trimming 

• mRNA : after quality trimming length  > 30 
bases 
• smallRNA : no trimming quality, select by size 
length (  see next talk) 
• no undetermined base in read (for assembly) 
• remove the both reads of one Paired-ends 
read (same fragment) 
• remove ribosome  

Depends on the biological object:  
mRNA, lncRNA, smallRNA… 

Trimmomatic  
remove adapter,  
Trimming low quality,  
length control  

SortMeRNA   
remove rRNA sequences  



Mapping 
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Sample characteristics before mapping 
what kind of data ? 

 
 

Depend on type of library 
•Paired-end reads or single reads 
•Stranded or not 
•Sizing, Size of reads 75,100,150… 
•Library depth 



Definitions of fragment and insert size 
 



Paired-end reads (PE) versus single reads (SR/SE) 
 

 
Chhangawala et al. Genome Biology (2015) 16:131 
 For DE analyses, same list of genes for 50bp in PE and 75bp in SE 
 For detect splicing junction, PE is better 
Z. Chang et al.  (2014) - PLOS one 
For Assembly (de novo genome) read length of 100 or more is better 
(organism dependent) 

Paired-ends reads 
• More strict, accurate on mapping and counts 
• Less duplicate reads  
 
But depend on  
 the transcriptome studied  
 the biological question 



Sequencing Stranded or not ? 
 



Sample characteristics before mapping 
what sort of data ? 

 
 

Depend on type of library 
•Paired-ends reads or Single reads 
•Stranded or not 
•Size of reads 75, 100,150 
•Depth of library 

 

Depend on knowledge about the organism 
Is there a genome sequence ? 
Is there a transcriptome reference ? 
Is there a quality of these references ? 



Reads  

mRNA  gene 
models  

Read count per gene model 

1/ Mapping 

2/ Counts 

1st strategy : mapping RNA-Seq against a transcriptome or 
a genome 

 
 

Genome sequence 

Gene expression / Diff analyses 



Reads  

mRNA gene models  

Read count per gene model 

Bowtie2 

Mapping 

TopHat2 / HiSat2 / STAR 
 

Counts 

Genome sequence 

1st strategy : mapping RNA-Seq against a genome 
(transcripts or genome) 

 
 

gene annotation file (gff,gtf) 

 

+  classical trimming, time saving 

-  confidence of gene annotation, no new genes detected 

Kallisto, Salmon,Sailfish 
 



Mapper: different types of tools 

 
 

Versus transcriptome: bowtie2 (one isoform / gene) 
 

Versus genome with alignment: Tophat2(bowtie2)/HiSat2, STAR  
 Search for the best  ‘exact’ alignment  
 Generate sam/bam files = describe alignments 
 



 
 BOWTIE2 : search for the best seed alignment 

 
Read:   TAGCTACGCTCTACGCTATCATGCATAAAC 
  
Seed 1 fw:  TAGCTACGCT  
Seed 2 fw:   ………….CGCTCTACGC  
Seed 3 fw:  ……………………….ACGCTATCAT  
….. 
Seed n fw: ……………………………………….ATGCATAAAC 
 
Some parameters are essential like end-to-end (default)  
end-to-end (no trimming)                                      local (soft clipped) 

Alignment: essential parameter 
 



Reads  

mRNA  gene 
models  

Mapping 

Genome sequence 

Bowtie2   
  

• No splicing 
• A reference transcript  
• No alternative transcript 

TopHat2 / Hisat2/STAR  
 

• Information on genome 
(min/max of intron length  
• All transcripts (gene models)  
for 1 gene 

Mapping 
 



Mappers: different type of tools 

 
 

Versus genome  last new tools (Free-alignment) 2015-2017: 
Kallisto,Salmon,Sailfish   
no real alignment : the information is not where a read aligns in a 
transcript , but only which transcripts could have generated the 
read.  
Estimation of k-mer assignment by Expectation-Maximization 
Generate expected counts /transcripts –gene (TPM) 
No sam/bam files, from fastq to TPM 

Versus transcriptome: bowtie2 (one isoform /gene) 
 

Versus genome with alignment: Tophat2(bowtie2)/HiSat2, STAR  
 Search for the best  ‘exact’ alignment  
 Generate sam/bam files = describe alignments 
 



New tools are Faster no finish photo:) & equivalent accuracy  

Mappers: different type of tools 

 
Web site, June 2016 



C. Everaert  et al.(2017)  
Benchmarking of RNA-sequencing 
analysis workflows using whole-
transcriptome RT-qPCR expression 
data. Scientific Reports 7, 1559 

Equivalent 
results  of 
workflows 



Reads  

mRNA  gene 
models  

Mapping 

Genome sequence 

Mapper parameters (example) 
 
 

Bowtie2   
  

Tophat2   
  

Bowtie2  
–x Arabidopsis_transcripts_index  
-1 read1.fastq -2 read2.fastq --local  

Tophat2  
 --min-intron-length 10 
 --max-intron-length 70000 
-G Arabidopsis_TAIR10.gff 
Arabidopsis_genome_index  
read1.fastq read2.fastq  

Default is –end-to-end 
and not --local Default min-intron=70 and 

max-intron=500 000 

 each tool = many parameters  with default (75 for tophat2) 

G. Baruzzo et al. dec 2016 - Nature methods 



Alignments 
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View Alignments 

fastq 

Files sam/bam 



Mapping : SAM/BAM file 
 

https://samtools.github.io/hts-specs/SAMv1.pdf 

 



View read alignment via IGV (Integrative Genome Viewer) 
 
 

Read density 

Read view 

Gene 

J.T. Robinson Integrative Genomics Viewer. Nature Biotechnology 29, 24–26 (2011) 



View read density and gene annotations via IGV 
 
 

2 Isoforms 
TAIR10 

Read density 



Counts 
 

Pre-processing 

Check Quality 

Mapping/Assembly 

Counts 

RAW DATA 

COUNTS BY GENE 

sam/bam 

fastq 



Reads  

mRNA  gene 
models  

Read count per gene model 

Mapping 

Counts SamTools, bedtools,  htseq-count, STAR, 
featurecounts 

Genome sequence 

gene annotation file (gff,gtf) 

Kallisto, Salmon,Sailfish 
 

sam/bam sam/bam 

Mapping 
Pseudo-Mapping 

Counts 
 

Type of counts : raw count (nb assigned reads), estimated counts, 
      normalized counts RPKM/FPKM/TPM  
      (size of library &  gene/transcript) 



 
Counts depend on the 
type of library 
•Stranded or not 
•Single reads or Paired-
end reads 
 
Counts by isoform or by 
gene 

How to count ? 
 

From htseq-count website 



• Understand the main characteristics of tools (splicing or not) 
  Know the essential parameters and the default values 
  
• Adjust parameters to your genome or question 
 Study coding or no coding RNA 
 Size of introns of organism  
 Repeated regions : multi-hits 
default 1 best hit randomly chosen 
 

• Counts by gene / transcripts   see next talk 

Conclusion on Mapping / counts 

 

 



Reads  

Reads  

Contigs  

1/ Initial Trimming 

3/ Super-Assembly 

2/ Assembly 

Complete and compare  
with set unigene 

 

+  defined new gene models 

-  Assembly: not perfect (contig quality), time  and memory consuming 

Read count per contigs 
 
 
 

Improve  gene annotation 
 
 
 
 

2nd strategy : de novo Assembly of RNA-Seq 
(without genome) 

4/ Mapping + Counts 



2 methods for de novo assembly of RNA-Seq 

 
1- OLC : overlap layout consensus : newbler for 454 
Research all overlap both reads to form a consensus=contig 
 

 Too expensive computer resources for million of reads 
treated 

 Adapted for seq. length > 300bases 
  

 
2- Bruijn Graph : velvet, trinity 
Cut reads in kmer and overlap k-mer to form graph 
Each graph path form a contig 
 
 If sequencing errors : many contigs 
 Need memory (150G – 500G)  



Reads  

Reads  

Contigs  

FastQC,  
cutadapt/timmomatic, fastx… 

(remove bad quality, adapter, read sizing) 

Velvet -Oases / Trinity 
(Bruijn graph)  

 
Trinity / iAssembler 1.3 

 (Overlap layout  consensus) 
 
 

Initial Trimming 

Super-Assembly 

Assembly 

Mapping Bowtie2, 
(paired, unique...) 

Complete and compare  
with set unigene 

Read count per gene/contigs 
Diff analysis on contigs 
 
 
 
 

Improve  gene annotation 
 
 
 
 

2nd strategy : de novo Assembly of RNAseq 

(without genome) 

 
 



 
 

F1_Mplex 

Nb of PE reads 43 030 388  PE 

Nb of contigs 33 736 

(length mean 1360) 

Nb of mapped contigs 

Genome TAIR10 

33 072 

98% 

Data from Illumina HiSeq2000 

•Velvet/oases (kmer  61,71) 

•iAssembler  

 

Assembly Results 
 

1 gene – 1 contig 
same gene model 

1 gene – 2 or more contigs 
same gene model 

contig 
CDS 
mRNA 

88% of genes confirmed by  at least one contig 



Quality of Assembly : contig versus gene annotation 
 
 

3% of contigs with no annotated genes  

35% of contigs with other gene models (isoforms) 

1 gene – 1 or n contigs 
 with other gene models 

Check contig quality  
 
• Number of contigs  near number of expected genes 
• Median length of contigs (N50) 
• % of reads that maps contigs, redundancy of the contigs  “multi-hits” 
• % contigs that encode proteins ‘known in bank’ 
 
  Trinotate (Trinity suite) 



Conclusion for assembly   
 
 
 

 A good quality of contigs, efficient to detect new gene models  
 Problems: distinct false/good gene models, chimera that increase with read 
number 
Improving Assembly tools  with PE, oriented, tuning parameters (coverage) 
 

Be careful, assembly can be difficult if genome  
contains many repeats, heterozygous regions, polyploidy … 
 A great number of contigs ( ex > 500.000 without change parmeters)  
 

Chimeric contigs  remove in part with library stranded 
 
 

stranded 

No stranded 

Assembly  
 
 



Conclusion on Bioinformatic usage 
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• Don’t forget the biological question 
• If you work with results done by other group 

- ask information on the tools used 
- just take time to check essential parameters 
 

• All seem easy when all is working well ! 
 
 RUN/TEST and ANALYSE results   
     is the best usage :!) 
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